skip to main content


Search for: All records

Creators/Authors contains: "Chavez, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Because of the extreme purity, lack of disorder, and complex order parameter, the first-order superfluid 3 He A–B transition is the leading model system for first order transitions in the early universe. Here we report on the path dependence of the supercooling of the A phase over a wide range of pressures below 29.3 bar at nearly zero magnetic field. The A phase can be cooled significantly below the thermodynamic A–B transition temperature. While the extent of supercooling is highly reproducible, it depends strongly upon the cooling trajectory: The metastability of the A phase is enhanced by transiting through regions where the A phase is more stable. We provide evidence that some of the additional supercooling is due to the elimination of B phase nucleation precursors formed upon passage through the superfluid transition. A greater understanding of the physics is essential before 3 He can be exploited to model transitions in the early universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. In this paper we describe the historical background of the introductory course in Electric Circuits I, how it has been taught, and the different modifications this course has undergone for the past few years. We describe preliminary results of a new step-based method on student learning which has been applied at the University of Texas at El Paso (UTEP) to improve students’ understanding of the topics covered in this course, and describe the step-based tutoring System, dubbed Circuit Tutor, developed by researchers at the UTEP. The results indicate Circuit Tutor platform can be used as a self-learning tool according to survey answers from students and the increasing passing rate in the Circuits I course. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$40tof liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$0νββ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$137Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$0νββof$${}^{136}$$136Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.

     
    more » « less
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. Free, publicly-accessible full text available June 1, 2024